Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cytosolic iron-sulfur cluster transfer-a proposed kinetic pathway for reconstitution of glutaredoxin 3.

Identifieur interne : 000467 ( Main/Exploration ); précédent : 000466; suivant : 000468

Cytosolic iron-sulfur cluster transfer-a proposed kinetic pathway for reconstitution of glutaredoxin 3.

Auteurs : Christine Wachnowsky [États-Unis] ; Insiya Fidai [États-Unis] ; James A. Cowan [États-Unis]

Source :

RBID : pubmed:27859051

Descripteurs français

English descriptors

Abstract

Iron-sulfur (Fe-S) clusters are ubiquitously conserved and play essential cellular roles. The mechanism of Fe-S cluster biogenesis involves multiple proteins in a complex pathway. Cluster biosynthesis primarily occurs in the mitochondria, but key Fe-S proteins also exist in the cytosol. One such protein, glutaredoxin 3 (Grx3), is involved in iron regulation, sensing, and mediating [2Fe-2S] cluster delivery to cytosolic protein targets, but the cluster donor for cytosolic Grx3 has not been elucidated. Herein, we delineate the kinetic transfer of [2Fe-2S] clusters into Grx3 from potential cytosolic carrier/scaffold proteins, IscU and Nfu, to evaluate a possible model for Grx3 reconstitution in vivo.

DOI: 10.1002/1873-3468.12491
PubMed: 27859051
PubMed Central: PMC5182112


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cytosolic iron-sulfur cluster transfer-a proposed kinetic pathway for reconstitution of glutaredoxin 3.</title>
<author>
<name sortKey="Wachnowsky, Christine" sort="Wachnowsky, Christine" uniqKey="Wachnowsky C" first="Christine" last="Wachnowsky">Christine Wachnowsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fidai, Insiya" sort="Fidai, Insiya" uniqKey="Fidai I" first="Insiya" last="Fidai">Insiya Fidai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Biophysics Graduate Program, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cowan, James A" sort="Cowan, James A" uniqKey="Cowan J" first="James A" last="Cowan">James A. Cowan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Biophysics Graduate Program, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27859051</idno>
<idno type="pmid">27859051</idno>
<idno type="doi">10.1002/1873-3468.12491</idno>
<idno type="pmc">PMC5182112</idno>
<idno type="wicri:Area/Main/Corpus">000391</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000391</idno>
<idno type="wicri:Area/Main/Curation">000391</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000391</idno>
<idno type="wicri:Area/Main/Exploration">000391</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cytosolic iron-sulfur cluster transfer-a proposed kinetic pathway for reconstitution of glutaredoxin 3.</title>
<author>
<name sortKey="Wachnowsky, Christine" sort="Wachnowsky, Christine" uniqKey="Wachnowsky C" first="Christine" last="Wachnowsky">Christine Wachnowsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fidai, Insiya" sort="Fidai, Insiya" uniqKey="Fidai I" first="Insiya" last="Fidai">Insiya Fidai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Biophysics Graduate Program, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cowan, James A" sort="Cowan, James A" uniqKey="Cowan J" first="James A" last="Cowan">James A. Cowan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Biophysics Graduate Program, The Ohio State University, Columbus, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FEBS letters</title>
<idno type="eISSN">1873-3468</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apoproteins (chemistry)</term>
<term>Apoproteins (genetics)</term>
<term>Apoproteins (metabolism)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Carrier Proteins (chemistry)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Cytosol (chemistry)</term>
<term>Cytosol (metabolism)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Gene Expression (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron (chemistry)</term>
<term>Iron (metabolism)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (chemistry)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sulfur (chemistry)</term>
<term>Sulfur (metabolism)</term>
<term>Thermotoga maritima (chemistry)</term>
<term>Thermotoga maritima (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apoprotéines (composition chimique)</term>
<term>Apoprotéines (génétique)</term>
<term>Apoprotéines (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Cytosol (composition chimique)</term>
<term>Cytosol (métabolisme)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Fer (composition chimique)</term>
<term>Fer (métabolisme)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de transport (composition chimique)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Saccharomyces cerevisiae (composition chimique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Soufre (composition chimique)</term>
<term>Soufre (métabolisme)</term>
<term>Thermotoga maritima (composition chimique)</term>
<term>Thermotoga maritima (métabolisme)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Apoproteins</term>
<term>Bacterial Proteins</term>
<term>Carrier Proteins</term>
<term>Iron</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Apoproteins</term>
<term>Bacterial Proteins</term>
<term>Carrier Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Apoproteins</term>
<term>Bacterial Proteins</term>
<term>Carrier Proteins</term>
<term>Iron</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cytosol</term>
<term>Saccharomyces cerevisiae</term>
<term>Thermotoga maritima</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Apoprotéines</term>
<term>Cytosol</term>
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Oxidoreductases</term>
<term>Protéines bactériennes</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
<term>Protéines recombinantes</term>
<term>Saccharomyces cerevisiae</term>
<term>Soufre</term>
<term>Thermotoga maritima</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Apoprotéines</term>
<term>Escherichia coli</term>
<term>Ferrosulfoprotéines</term>
<term>Oxidoreductases</term>
<term>Protéines bactériennes</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Escherichia coli</term>
<term>Saccharomyces cerevisiae</term>
<term>Thermotoga maritima</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Apoprotéines</term>
<term>Cytosol</term>
<term>Escherichia coli</term>
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Oxidoreductases</term>
<term>Protéines bactériennes</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
<term>Protéines recombinantes</term>
<term>Saccharomyces cerevisiae</term>
<term>Soufre</term>
<term>Thermotoga maritima</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Gene Expression</term>
<term>Humans</term>
<term>Kinetics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Expression des gènes</term>
<term>Humains</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron-sulfur (Fe-S) clusters are ubiquitously conserved and play essential cellular roles. The mechanism of Fe-S cluster biogenesis involves multiple proteins in a complex pathway. Cluster biosynthesis primarily occurs in the mitochondria, but key Fe-S proteins also exist in the cytosol. One such protein, glutaredoxin 3 (Grx3), is involved in iron regulation, sensing, and mediating [2Fe-2S] cluster delivery to cytosolic protein targets, but the cluster donor for cytosolic Grx3 has not been elucidated. Herein, we delineate the kinetic transfer of [2Fe-2S] clusters into Grx3 from potential cytosolic carrier/scaffold proteins, IscU and Nfu, to evaluate a possible model for Grx3 reconstitution in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27859051</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3468</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>590</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2016</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>FEBS letters</Title>
<ISOAbbreviation>FEBS Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Cytosolic iron-sulfur cluster transfer-a proposed kinetic pathway for reconstitution of glutaredoxin 3.</ArticleTitle>
<Pagination>
<MedlinePgn>4531-4540</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/1873-3468.12491</ELocationID>
<Abstract>
<AbstractText>Iron-sulfur (Fe-S) clusters are ubiquitously conserved and play essential cellular roles. The mechanism of Fe-S cluster biogenesis involves multiple proteins in a complex pathway. Cluster biosynthesis primarily occurs in the mitochondria, but key Fe-S proteins also exist in the cytosol. One such protein, glutaredoxin 3 (Grx3), is involved in iron regulation, sensing, and mediating [2Fe-2S] cluster delivery to cytosolic protein targets, but the cluster donor for cytosolic Grx3 has not been elucidated. Herein, we delineate the kinetic transfer of [2Fe-2S] clusters into Grx3 from potential cytosolic carrier/scaffold proteins, IscU and Nfu, to evaluate a possible model for Grx3 reconstitution in vivo.</AbstractText>
<CopyrightInformation>© 2016 Federation of European Biochemical Societies.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wachnowsky</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fidai</LastName>
<ForeName>Insiya</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cowan</LastName>
<ForeName>James A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI072443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM095450</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016422">Letter</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS Lett</MedlineTA>
<NlmUniqueID>0155157</NlmUniqueID>
<ISSNLinking>0014-5793</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001059">Apoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C404105">GLRX3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C506160">ISCU protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C426067">NFU1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C080001">nifS protein, Bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C545181">Grx3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001059" MajorTopicYN="N">Apoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020124" MajorTopicYN="N">Thermotoga maritima</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">IscU</Keyword>
<Keyword MajorTopicYN="Y">Nfu</Keyword>
<Keyword MajorTopicYN="Y">[2Fe-2S] cluster transfer</Keyword>
<Keyword MajorTopicYN="Y">glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">iron-sulfur cluster</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>11</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27859051</ArticleId>
<ArticleId IdType="doi">10.1002/1873-3468.12491</ArticleId>
<ArticleId IdType="pmc">PMC5182112</ArticleId>
<ArticleId IdType="mid">NIHMS830594</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2002 Jul 16;41(28):8876-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2015 Feb 11;51(12):2253-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25556595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Jun 22;49(24):4945-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20481466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 May 5;281(18):12344-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16527810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1982 Sep 14;21(19):4762-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6753926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Oct;11(10):772-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26302480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 May;24(5):303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24314740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Nov 11;89(5):656-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22077971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 May 6;408(2):329-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21513700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1996 Jun 1;237(2):260-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Paediatr Neurol. 2012 Nov;16(6):730-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22398176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;400:429-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Apr 2;394(2):372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 Sep 25;465(3):620-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26296460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:247-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2016 Oct;21(7):825-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27538573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Sep 24;52(38):6633-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Aug;26(15):5675-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16847322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Oct;86(1):155-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10468587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9762-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12886008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Aug 12;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27519415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Jul 31;124(30):8774-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12137512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2015 Jul-Sep;94(7-9):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1493-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25245479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Dec;25(24):10833-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16314508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Jul 4;134(26):10745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22687047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 May;188(9):3182-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16621810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 May 19;23(10):2105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1528-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2006 Mar;3(3):199-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16517407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 10;279(50):51923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2007 Aug 14;(30):3192-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Dec 19;283(51):35797-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Apr 17;580(9):2273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16566929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2015 Jun 30;54(25):3871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26016389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2016 Oct;21(7):887-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27590019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Aug 11;48(31):7512-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19722697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Dec 30;137(51):16133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26613676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Jul;278(14):2525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Sep 19;134(37):15213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Sep;28(17):5517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2007 May;3(5):278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17401378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Oct 7;89(4):486-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21944046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2011 May 7;47(17):4989-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21437321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Jan 14;137(1):390-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25478817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:457-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 20;40(46):14069-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11705400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Jan 29;41(4):1195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11802718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Sep 19;45(37):11087-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16964969</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Wachnowsky, Christine" sort="Wachnowsky, Christine" uniqKey="Wachnowsky C" first="Christine" last="Wachnowsky">Christine Wachnowsky</name>
</region>
<name sortKey="Cowan, James A" sort="Cowan, James A" uniqKey="Cowan J" first="James A" last="Cowan">James A. Cowan</name>
<name sortKey="Cowan, James A" sort="Cowan, James A" uniqKey="Cowan J" first="James A" last="Cowan">James A. Cowan</name>
<name sortKey="Cowan, James A" sort="Cowan, James A" uniqKey="Cowan J" first="James A" last="Cowan">James A. Cowan</name>
<name sortKey="Fidai, Insiya" sort="Fidai, Insiya" uniqKey="Fidai I" first="Insiya" last="Fidai">Insiya Fidai</name>
<name sortKey="Fidai, Insiya" sort="Fidai, Insiya" uniqKey="Fidai I" first="Insiya" last="Fidai">Insiya Fidai</name>
<name sortKey="Wachnowsky, Christine" sort="Wachnowsky, Christine" uniqKey="Wachnowsky C" first="Christine" last="Wachnowsky">Christine Wachnowsky</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000467 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000467 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27859051
   |texte=   Cytosolic iron-sulfur cluster transfer-a proposed kinetic pathway for reconstitution of glutaredoxin 3.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27859051" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020